
Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

A Performance Comparison of Advanced Encryption

Standard Across Javascript Libraries

M. Rifky I. Bariansyah and 135170811

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113517081@std.stei.itb.ac.id

Abstract— JavaScript is a very popular multi-paradigm

programming language and also one of the core technologies of the

world wide web alongside HTML and CSS. When building using

JavaScript we need to reinforce secure communication. To achieve

this we can implement AES specification as the block cipher

standard. Considering JavaScript and AES popularity it would be

insightful and valuable for us to compare the performance of AES

implementation across JavaScript libraries. In this paper we find

that Crypto, the native Node.js module, have the fastest time

execution. Although other libraries have a more simple interface

which makes them easier to use.

Keywords—Javascript, RSA Algorithm, Libraries,

Cryptography

I. INTRODUCTION

We live our lives by exchanging information. With

information we attach meaning to data. Through it we learn and

gain understanding of a concept. Through the advancement of

technology, the number of information exchanges is increasing

as the time goes by. However, not all information is for

everybody. A piece of information is for someone who has the

right to it and not anybody else. Rightful access to information

is so important, that the way we store and transmit it keeps

evolving to make sure only those for whom the information is

intended can read it. Cryptography is the study to attempt just

that. Since Julius Caesar hid a message for his general in the war

front, it has been hundreds of years of attempt put into securing

communication. Cryptography protects information for secure

communication by transforming their form that unintended

recipients or adversaries cannot understand.

One of the remarkable milestones in modern cryptography

was the Rijndael algorithm. Rijndael is the brainchild of Vincent

Rijmen and Joan Daemen from Belgia, hence the acronym. It is

an innovation for encrypting and decrypting a message to

provide secure communication. At that time, National Institute

of Standards and Technology pick Rijndael algorithm as

Advanced Encryption Standard, replacing Data Encryption

Standard which is considered not safe from brute-force attacks.

People have their believe in this algorithm that even the US

National Security Agency authorizes transmission of classified

data through AES. Other than that, it is used in a lot of ways

including wireless security, SSL/TLS, and file encryption.

In this day and age a lot of information are exchanged through

the web. In its development one of the most popular and widely-

used programming language is JavaScript. JavaScript is most

well-known as the scripting language for web pages, although

many of the non-browser environments are also using it, such as

Node.js. In its uses, to support development of a program,

JavaScript has a set of a collection of functions called a library.

Some of those libraries are designed to reinforce secure

communication for the program. Considering JavaScript and

AES popularity it would be insightful and valuable for us to

compare the performance of AES implementation across

JavaScript libraries.

II. LITERATURE REVIEW

A. Advanced Encryption Standard

The Advanced Encryption Standard (AES) specifies a FIPS-

approved cryptographic algorithm that can be used to protect

electronic data. The AES algorithm is a symmetric block cipher

that can encrypt (encipher) and decrypt (decipher) information

[1]. At that time, Data Encryption Standard or DES for short are

considered unsafe due to its vulnerability from brute-force

attacks. The National Institute of Standards and Technology

(NIST) proposed to the Federal Government a new

cryptography standard which after will be called Advanced

Encryption Standard. To pick the algorithm for this standard

NIST holds an international standard competition. Rijndael

algorithm comes out as the winner, written by Vincent Rijmen

and Joan Daemen from Belgia. Rijndael algorithm supports keys

with length from 128 bit to 256 bit with 32 bit step. In the official

announcement AES are categorized into “AES-128”, “AES-

192”, and “AES-256” based on key length. Also, with Rijndael

we can set the length of block size and key size independently.

From Rinaldi Munir presentation about block cipher review

(AES) [2] In general the algorithm is as follows:

1. Add round key, perform XOR between initial state

(plaintext) with cipher key. This step is also called the

initial round.

2. In number of rounds – 1 rounds, do:

a. Substitute byte using S-box

b. Shift state array by wrapping

c. Mix data within each column in state array

d. Perform XOR between current state and round

key

3. In the final round, do:

a. Substitute byte using S-box

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

b. Shift state array by wrapping

c. Perform XOR between current state and round

key

Or better illustrated in figure 1.

Figure 1 Rijndael Algorithm [2]

B. JavaScript

JavaScript is part of the triad of technologies that all Web

developers must learn: HTML to specify the content of web

pages, CSS to specify the presentation of web pages and

JavaScript to specify the behaviour of web pages[3]. JavaScript

is a programming language that conforms to the ECMAScript

specification, high-level, mostly just-in-time compiled.

JavaScript is created by Brendan Eich, an American software

technologist who also co-founded the Mozilla Corporation.

Every major web browser has a dedicated JavaScript engine to

run it. The vast majority of websites use JavaScript for client-

side page behavior. This diagram below shows the market

position of JavaScript in terms of popularity and traffic

compared to the most popular client-side programming

languages.

Figure 2 JavaScript Market Position [4]

Examples of scripted behavior that can be implemented using

JavaScripts are:

1. Animation of page components

2. Interactive content

3. Transmitting user behavior for analytics

4. Form validation

5. Loading new content without refresh

Nowadays, JavaScript is also a popular language for back-end

programming. Node.js for example, is an open-source

JavaScript runtime environment that executes JavaScript code

outside a web browser. A lot of the time, developers utilize

libraries and frameworks when building an application using

JavaScript. Some of these libraries are dedicated for secure

communication which we will benchmark in the next section.

We will compare AES performance from Crypto [5], SJCL[6],

AES-JS[7], and CryptoJS[8].

III. BENCHMARK DESIGN

A. Environment

We run this benchmark in a 2017 Macbook Pro with

specification below:

Processor : 2,3 GHz Dual-Core Intel Core i5

Memory : 8 GB 2133 MHz LPDDR3

OS : macOS Catalina version 10.15.7

B. Experimentation Design

You can see the full source code by visiting

https://github.com/Barbariansyah/js-cryptography-library-

benchmark. The experimentation will run in Node.js v15.3.0.

We will also need to install CryptoJS (4.0.0), AES-JS (3.1.2),

and SJCL (1.0.8). The main components of the experimentation

are utilized as follows:

1. Node.js Performance Measurement APIs

Performance hooks is a Node.js module that provides

an implementation of subset of the W3C Web

Performance APIs as well as additional APIs for Node.js-

specific performance measurements. We will be using

perf_hooks.performance which is added in v8.5.0 as an

object that collects performance metrics from the current

Node.js instance. It is similar to window.performance in

browsers. We will also be using

perf_hooks.PerformanceObserver, an object that

provides notifications when a new performance entry

instance has been added to the performance timeline.

Firstly, we will instantiate a new

perf_hooks.PerformanceObserver object. Then we

subscribe the object to notifications of the new

PerformanceEntry instance, in our case we will pass

entryTypes measure as the options. To measure elapsed

time for an operation we will be using

perf_hooks.performance mark method to mark the start

and end of measurement. To present the result as a

performance entry, we will use perf_hooks.performance

measure method. For clarity, below is an example of how

we will implement this design.

https://github.com/Barbariansyah/js-cryptography-library-benchmark
https://github.com/Barbariansyah/js-cryptography-library-benchmark

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

performance.mark(‘start');
foo();
performance.mark('end');

performance.measure('entryOne', 'start', 'end');

2. CryptoJS

CryptoJS is an open source collection of standard and

secure cryptographic algorithms implemented in

JavaScript written by Evan Vosberg. They have a

consistent and simple interface. It also claims to be fast

and implemented using best practices and patterns. It

provides hashing, HMAC, PBKDF2, ciphers, and

encoders. For AES cipher, CryptoJS supports AES-128,

AES-192, and AES-256 depending on the size of the key

we pass in. To use AES, we simply need to pass in the

message and the key for encryption. The same goes for

decryption. Below is an example of how we can use the

library.

var encrypted = CryptoJS.AES.encrypt(message, key);
var decrypted = CryptoJS.AES.decrypt(encrypted, key);

3. AES-JS

AES-JS is a pure JavaScript implementation of AES

block cipher algorithm and common modes of operation

written by Richard Moore. Pure JavaScript means this

library has no dependencies. AES-JS also supports AES-

128, AES-192, and AES-256. It works on both Node.js

and web browsers. There are several modes of

operations, each with its pros and cons, to use this library

the writer recommended to utilize CBC or CTR

(counter). To encrypt in CTR mode, firstly we need to

convert the message into bytes. Then we need to create a

new ctr modes operation object passing key and a

Counter object as parameters. Then we can use the new

ctr object to encrypt the message bytes. Lastly, we might

want to convert the encrypted bytes to a hex

representation. Below is an example of how we can

encrypt using CTR mode.

var key = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16];
var textBytes = aesjs.utils.utf8.toBytes(message);
var aesCtr = new aesjs.ModeOfOperation.ctr(key, new

aesjs.Counter(5));
var encryptedBytes = aesCtr.encrypt(textBytes);
var encryptedHex =

aesjs.utils.hex.fromBytes(encryptedBytes);

4. SJCL (Stanford Javascript Crypto Library)

SJCL is a project by the Stanford Computer Security Lab

to build a cross-browser library for cryptography in

JavaScript. It claims to be a fast, small, and easy-to-use

library. SJCL supports AES-128, AES-192, and AES-

256 as well. SJCL is written by Emily Stark, Mike

Hamburg, and Dan Boneh. You can see in the example

below, the library lives up to its claim of simplicity. It has

a similar interface as CryptoJS interface.

var encrypted = sjcl.encrypt(key, message)
var decrypted = sjcl.decrypt(key, encrypted)

5. Crypto, Node.js Native Module

Crypto is a Node.js narive module that provides

cryptographic functionality that includes a set of

wrappers for OpenSSL's hash, HMAC, cipher, decipher,

sign, and verify functions. It has a stability 2 index which

means it prioritizes compatibility with npm ecosystem.

To encrypt a message, firstly we need to call

createCipheriv to create a Cipher object with the given

algorithm, key, and initialization vector. The algorithm

parameter is dependent on OpenSSL, in this case we can

pass “aes-256-ctr”. To see all available cipher algorithms

we can use “openssl list -cipher-algorithms”. Then we

can use the new Cipher object to encrypt a message by

calling update, passing the message as parameter, and

finish by calling the final method. Below is an example

of how we can use the library.

const encrypt = (text) => {
const cipher = crypto.createCipheriv(‘aes-256-ctr’,
key, iv);
const encrypted = Buffer.concat([cipher.update(text),
cipher.final()]);

return {
 iv: iv.toString('hex'),
 content: encrypted.toString('hex')
};

};

IV. EXPERIMENTATION

In this chapter we will present and evaluate the result of

experimentation. We will divide the experimentation for each

library.

A. CryptoJS Experimentation

Using CryptoJS, the experimentation yields these results for

each message size.

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 17.841353 13.852418

2 16.396963 14.069593

3 16.515645 13.952843

4 17.146084 14.114056

5 17.977745 14.042595

Average 17.175558 14.006301

Table 1 CryptoJS Experimentation with 10,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 35.440785 25.186723

2 35.795584 28.45994

3 35.151028 26.831793

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

4 34.939213 25.552472

5 35.717076 25.185647

Average 35.4087372 26.243315

Table 2 CryptoJS Experimentation with 100,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 95.000625 75.852406

2 89.070994 89.135333

3 99.424576 82.708819

4 98.698973 88.54111

5 89.021984 78.228777

Average 94.2434304 82.893289

Table 3 CryptoJS Experimentation with 500,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 141.628682 112.372665

2 148.263237 111.716496

3 155.338804 113.907543

4 141.73455 103.623569

5 140.762151 112.672829

Average 145.5454848 110.8586204

Table 4 CryptoJS Experimentation with 1,000,000 byte-sized

message

Here we can observe that encryption takes longer than

decryption in every size variation. Although, the time difference

between is not significant, ranging from 12 – 25% faster in

decryption, with the average of 20%.

B. SJCL (Stanford JavaScript Crypto Library)

Experimentation

Using SJCL, the experimentation yields these results for each

message size.

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 75.641918 9.497107

2 84.286674 9.679138

3 73.819804 9.089023

4 78.747621 9.456019

5 79.120135 9.252784

Average 78.3232304 9.3948142

Table 5 SJCL Experimentation with 10,000 byte-sized message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 118.25868 59.13565

2 109.439826 56.286141

3 115.700833 54.824758

4 117.45994 56.030169

5 123.567633 50.173876

Average 116.8853824 55.2901188

Table 6 SJCL Experimentation with 100,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 304.161079 199.06949

2 364.307798 229.534752

3 351.409116 225.021283

4 285.920648 190.658386

5 350.458661 220.828816

Average 331.2514604 213.0225454

Table 7 SJCL Experimentation with 500,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 652.073099 430.906642

2 583.915301 410.622848

3 623.635585 412.520444

4 589.865841 418.501603

5 648.900639 464.372405

Average 619.678093 427.3847884

Table 8 SJCL Experimentation with 1,000,000 byte-sized

message

Here we can observe that encryption also takes longer than

decryption in every size variation. With this library the time

difference between is quite large in smaller message, in this case

with the input of 50,000 byte-sized message, it is 88% faster in

decryption. In larger messages, it is ranging from 31 – 52%

faster in decryption, with the average of 39%.

C. AES-JS Experimentation

Using AES-JS, the experimentation yields these results for

each message size.

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 30.052366 7.326593

2 26.488317 7.174984

3 25.551154 7.882844

4 28.011255 8.478245

5 27.937679 8.241946

Average 27.6081542 7.8209224

Table 9 AES-JS Experimentation with 10,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 101.8479 44.801735

2 101.462085 45.430548

3 101.970406 41.799856

4 91.421935 38.576278

5 99.858574 47.004053

Average 99.31218 43.522494

Table 10 AES-JS Experimentation with 100,000 byte-sized

message

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 355.048412 147.901876

2 322.731794 144.807294

3 311.07868 137.132927

4 323.040695 154.003107

5 346.979898 165.656987

Average 331.7758958 149.9004382

Table 11 AES-JS Experimentation with 500,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 650.179047 329.7478

2 633.404643 288.69983

3 600.809919 289.285038

4 605.90802 284.774002

5 671.573227 332.880071

Average 632.3749712 305.0773482

Table 12 AES-JS Experimentation with 1,000,000 byte-sized

message

Here we can observe that encryption also takes longer than

decryption in every size variation. With this library the time

difference between is quite large in smaller messages, in this

case with the input of 50,000 byte-sized messages, it is 71%

faster in decryption. In larger messages, it is ranging from 51 –

56% faster in decryption, with the average of 54%.

D. Crypto, Node.js Native Module Experimentation

Using Crypto, the experimentation yields these results for

each message size.

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 0.736905 0.195224

2 0.801789 0.199657

3 0.604672 0.20647

4 0.608925 0.207295

5 0.607982 0.21767

Average 0.6720546 0.2052632

Table 13 Crypto Experimentation with 10,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 0.989016 1.258056

2 0.898075 1.436051

3 1.318075 1.330079

4 1.328486 1.31401

5 1.056794 1.279425

Average 1.1180892 1.3235242

Table 14 Crypto Experimentation with 100,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 2.517895 4.221895

2 2.880784 4.835602

3 3.06908 3.820867

4 2.723011 3.746837

5 2.669575 4.114572

Average 2.772069 4.1479546

Table 15 Crypto Experimentation with 500,000 byte-sized

message

Experiment

No.

Elapsed Time in Millisecond

Encryption Decryption

1 4.871497 7.979456

2 4.770808 7.559927

3 4.60618 8.267171

4 4.297014 8.303212

5 5.276317 7.78932

Average 4.7643632 7.9798172

Table 16 Crypto Experimentation with 1,000,000 byte-sized

message

Here we can observe that encryption takes longer than

decryption in small message while less in larger messages. We

can also see that this library is vastly faster than the others.

D. Elapsed Time Comparison

In graph representation we can see the data from the native

Node.js module, Crypto, is in a different range.

Figure 3 Message Size vs Time (Encryption)

For clarity we will zoom in on the data from Crypto.

Figure 4 Message Size vs Time (Encryption with Crypto)

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

For encryption, we can see that Crypto has the fastest

execution time, followed by CryptoJS, AES-JS, and SJCL up to

500,000 byte-sized messages. In 1,000,000 byte-sized messages

we can see that AES-JS is slightly faster than CryptoJS. In

Figure 3, we find that the similar range difference also occurs on

decryption.

Figure 5 Message Size vs Time (Decryption)

For clarity we will also zoom in on the data from Crypto.

Figure 6 Message Size vs Time (Decryption with Crypto)

For decryption we can see that Crypto also has the fastest

execution time, followed by CryptoJS, AES-JS, and SJCL in

large messages. In 10,000 byte-sized messages, decryption is

faster in AES-JS than in Crypto.

V. CONCLUSION

From the experimentation result across libraries, we can

observe that Crypto, the native Node.js module, yields the

fastest execution time both in encryption and decryption

followed by CryptoJS, AES-JS, and SJCL. Although, from the

experimentation design we can see that CryptoJS, AES-JS, and

SJCL have a more straightforward interface than Crypto.

Another important finding is that between the second and third

fastest library in this experimentation, CryptoJS and AES-JS,

CryptoJS is faster in encryption while in a certain size range

AES-JS is faster in decryption. These three key discoveries can

be valuable in the decision making process of choosing a library

for implementing AES in JavaScript.

VI. ACKNOWLEDGMENT

Thank God for his blessings I am able to finish this paper with

great studiousness. I would like to thank our family and friends

for supporting us in the making of this paper. I would also like

to thank Dr. Ir. Rinaldi Munir for his guidance and the

inspiration all his students receive through his teaching. May

this paper be beneficial and insightful for the reader.

REFERENCES

[1] Standard, N. F. (2001). Announcing the advanced encryption standard
(aes). Federal Information Processing Standards Publication, 197(1-51), 3-

3.

[2] Munir, R. (2020). Review Beberapa Block Cipher dan Stream Cipher

(Bagian 4: Advanced Encryption Standard (AES))

[3] Flanagan, D., & Like, W. S. (2006). JavaScript: The Definitive Guide, 5th.
[4] "Usage statistics of JavaScript as client-side programming language on

websites". w3techs.com.

[5] OpenJS Foundation. Crypto. Retrieved from

https://nodejs.org/api/crypto.html

[6] Stark, E., Hamburg, M., & Boneh, D. (2009, December). Symmetric
cryptography in javascript. In 2009 Annual Computer Security

Applications Conference (pp. 373-381). IEEE.

[7] Moore, R. (2018). AES-JS. Retrieved from https://github.com/ricmoo/aes-

js

[8] Vosberg, E. (2020). CryptoJS. Retrieved from
https://github.com/ricmoo/aes-js

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 Desember 2020

M. Rifky I. Bariansyah

13517081

https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/cp-javascript/
https://nodejs.org/api/crypto.html
https://github.com/ricmoo/aes-js
https://github.com/ricmoo/aes-js
https://github.com/ricmoo/aes-js

	I. Introduction
	II. Literature Review
	A. Advanced Encryption Standard
	B. JavaScript

	III. Benchmark Design
	A. Environment
	B. Experimentation Design

	IV. Experimentation
	A. CryptoJS Experimentation
	B. SJCL (Stanford JavaScript Crypto Library) Experimentation
	C. AES-JS Experimentation
	D. Crypto, Node.js Native Module Experimentation
	D. Elapsed Time Comparison

	V. Conclusion
	VI. Acknowledgment
	References
	PeRNYATAAN

